[发明专利]基于群卷积特征拓扑空间的深度学习网络及其训练方法有效

专利信息
申请号: 202010104191.1 申请日: 2020-02-20
公开(公告)号: CN111353583B 公开(公告)日: 2023-04-07
发明(设计)人: 钱夔;田磊;刘义亭 申请(专利权)人: 南京工程学院
主分类号: G06N3/0464 分类号: G06N3/0464;G06N3/082
代理公司: 南京钟山专利代理有限公司 32252 代理人: 陈月菊
地址: 211167 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于群卷积特征拓扑空间的深度学习网络,包括卷积特征提取层、群卷积拓扑层和深度特征识别层;卷积特征提取层用于提取样本数据的多通道CNN卷积特征,将提取结果作为群卷积拓扑层的输入;群卷积拓扑层用于结合提取的多通道CNN卷积特征,以通道索引按群分类形成群卷积,构造图拓扑空间,将每个群卷积特征看成图拓扑空间节点,并自动/手动构建图拓扑空间节点连接规则,生成拉普拉斯矩阵L,将拉普拉斯矩阵L作为深度特征识别层的输入;深度特征识别层用于根据输入的拉普拉斯矩阵L,输出样本数据对应的群卷积特征拓扑空间图特征。本发明能够赋予不同通道下CNN特征的图拓扑空间规则,从而加快传统CNN训练与收敛速度。
搜索关键词: 基于 卷积 特征 拓扑 空间 深度 学习 网络 及其 训练 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京工程学院,未经南京工程学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010104191.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top