[发明专利]基于LMD和脉冲神经网络的轴承故障诊断方法有效
申请号: | 202010105681.3 | 申请日: | 2020-02-21 |
公开(公告)号: | CN111275004B | 公开(公告)日: | 2022-10-11 |
发明(设计)人: | 左琳;张磊;张昌华;刘宇;张哲涵 | 申请(专利权)人: | 电子科技大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04;G01M13/04;G01M13/045 |
代理公司: | 成都虹盛汇泉专利代理有限公司 51268 | 代理人: | 王伟 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于LMD和脉冲神经网络的轴承故障诊断方法,应用于机械故障诊断和计算机人工智能技术领域,针对现有技术利用SNN在机械故障诊断领域的性能研究的匮乏;本发明首先利用LMD将轴承振动信号分解为若干个PF分量,计算出这些PF分量和原始振动信号的统计学特征;接着将计算出的统计学特征进行min‑max归一化,利用高斯群编码的方法将归一化后的特征向量编码为脉冲序列;然后搭建脉冲神经网络模型,利用改进的Tempotron算法对脉冲神经网络模型的输入层与输出层之间的突触权重进行学习,直至满足训练终止条件,再利用训练好的模型进行故障诊断;实验表明本发明方法的诊断精度远高于传统方法。 | ||
搜索关键词: | 基于 lmd 脉冲 神经网络 轴承 故障诊断 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010105681.3/,转载请声明来源钻瓜专利网。