[发明专利]基于压缩感知和卷积网络的物体检测方法有效
申请号: | 202010113024.3 | 申请日: | 2020-02-24 |
公开(公告)号: | CN111428751B | 公开(公告)日: | 2022-12-23 |
发明(设计)人: | 索津莉;张志宏;任杰;戴琼海 | 申请(专利权)人: | 清华大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/82;G06N3/04;G06N3/08 |
代理公司: | 北京清亦华知识产权代理事务所(普通合伙) 11201 | 代理人: | 王艳斌 |
地址: | 10008*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于压缩感知和卷积网络的物体检测方法,该方法构建了二维网络隐层引导网络的收敛方向,并采用重建原始信号作为引导信号,在网络结构设计上,采用了级联式网络设计:第一部分是多通道整图重构网络,将一维压缩编码信号重构至和原始信号接近的二维图像,转换为便于提取检测特征的形式。第二部分是检测网络,从第一网络的输出结果辨识场景中存在的物体和类别。在网络学习方面,依次训练两个子网络,然后进行联合网络的训练,解决了联合训练中的级联后梯度变化和预训练不一致的问题,获得优于子网络独立训练更好的性能。该方法实现了从压缩感知信号到物体检测结果的端到端映射,以更低的采样率和采集成本来完成检测任务。 | ||
搜索关键词: | 基于 压缩 感知 卷积 网络 物体 检测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010113024.3/,转载请声明来源钻瓜专利网。