[发明专利]基于压缩感知和卷积网络的物体检测方法有效

专利信息
申请号: 202010113024.3 申请日: 2020-02-24
公开(公告)号: CN111428751B 公开(公告)日: 2022-12-23
发明(设计)人: 索津莉;张志宏;任杰;戴琼海 申请(专利权)人: 清华大学
主分类号: G06V10/764 分类号: G06V10/764;G06V10/82;G06N3/04;G06N3/08
代理公司: 北京清亦华知识产权代理事务所(普通合伙) 11201 代理人: 王艳斌
地址: 10008*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于压缩感知和卷积网络的物体检测方法,该方法构建了二维网络隐层引导网络的收敛方向,并采用重建原始信号作为引导信号,在网络结构设计上,采用了级联式网络设计:第一部分是多通道整图重构网络,将一维压缩编码信号重构至和原始信号接近的二维图像,转换为便于提取检测特征的形式。第二部分是检测网络,从第一网络的输出结果辨识场景中存在的物体和类别。在网络学习方面,依次训练两个子网络,然后进行联合网络的训练,解决了联合训练中的级联后梯度变化和预训练不一致的问题,获得优于子网络独立训练更好的性能。该方法实现了从压缩感知信号到物体检测结果的端到端映射,以更低的采样率和采集成本来完成检测任务。
搜索关键词: 基于 压缩 感知 卷积 网络 物体 检测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010113024.3/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top