[发明专利]基于多损失融合模型的车辆再识别方法有效

专利信息
申请号: 202010148337.2 申请日: 2020-03-05
公开(公告)号: CN111382690B 公开(公告)日: 2022-09-06
发明(设计)人: 李旻先;许诗瑞 申请(专利权)人: 南京理工大学
主分类号: G06V10/774 分类号: G06V10/774;G06V20/54;G06V10/80;G06V10/82;G06N3/04
代理公司: 南京理工大学专利中心 32203 代理人: 王玮
地址: 210094 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于多损失融合模型的车辆再识别方法,该方法针对车辆再识别问题,设计了一种深度卷积神经网络结构,采用一种多损失融合模型来联合监督深度卷积神经网络的训练,实现对车辆同ID样本差异和不同ID样本差异的联合优化,旨在学习到更具有辨别力的特征表达。其中,提出的多集群中心损失函数可以拉开类间距离并且拉近类内距离,使得属于同一ID的车辆特征尽可能的靠近类中心,有效提高了特征表达的辨别力。本发明提出的多损失融合模型,结合多种数据增强方式,有效地提高了车辆再识别的精度。
搜索关键词: 基于 损失 融合 模型 车辆 识别 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京理工大学,未经南京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010148337.2/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top