[发明专利]基于生成式对抗神经网络的CFA图像去马赛克方法有效

专利信息
申请号: 202010239207.X 申请日: 2020-03-30
公开(公告)号: CN111383200B 公开(公告)日: 2023-05-23
发明(设计)人: 罗静蕊;王婕 申请(专利权)人: 西安理工大学
主分类号: G06T5/00 分类号: G06T5/00;G06N3/045;G06N3/0475;G06N3/0464;G06N3/048;G06N3/08
代理公司: 西安弘理专利事务所 61214 代理人: 曾庆喜
地址: 710048 陕*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了基于生成式对抗神经网络的CFA图像去马赛克方法,具体为:步骤1、构造训练数据集,并对数据进行预处理操作,得到数量充足的训练数据集;步骤2、构建生成式对抗网络GAN;步骤3、将步骤1中得到的训练数据集进行一系列像素操作,作为步骤2中所搭建GAN网络的输入;步骤4、设置步骤2中所搭建GAN网络的损失函数、超参数,选择网络优化算法以优化损失函数;步骤5、训练构建的生成式对抗网络GAN;步骤6、对步骤5中的已训练网络模型进行测试实验,并用彩色峰值信噪比和结构相似性指数度量去马赛克图像,说明网络性能。该方法旨在减少去马赛克图像的伪影现象,更好的恢复图像中高频部分(角或边)的纹理信息。
搜索关键词: 基于 生成 对抗 神经网络 cfa 图像 马赛克 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安理工大学,未经西安理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010239207.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top