[发明专利]一种基于多数投票的深度学习城市功能区分类方法在审
申请号: | 202010329285.9 | 申请日: | 2020-04-23 |
公开(公告)号: | CN111639672A | 公开(公告)日: | 2020-09-08 |
发明(设计)人: | 孟庆岩;孙震辉;赵茂帆;张颖 | 申请(专利权)人: | 中国科学院空天信息创新研究院 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 北京亿腾知识产权代理事务所(普通合伙) 11309 | 代理人: | 陈霁 |
地址: | 100101 北京*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 城市功能区分类以往研究多基于POI等社会属性数据与其他数据融合,但基于社会属性数据进行功能区分类存在一些不容忽视的问题。本发明针对上述问题,公开了一种基于多数投票的深度学习城市功能区分类方法,用于稳健准确的从高分辨率遥感影像中对城市功能区进行分类。本发明的目的通过以下技术步骤实现:步骤1)图像和矢量的预处理。步骤2)为针对深度学习需要大量的样本问题,进行样本制作。步骤3)针对在遥感领域,具体分类任务的海量训练样本的收集十分困难,而且复杂昂贵,构建大规模、高质量的带标注数据集几乎无法实现的问题,基于GoogLeNet进行迁移学习。步骤4)利用分解的方法将大尺寸的图像分割成尺寸较小的单元进行处理。步骤5)利用多数投票策略确定最终分类结果。 | ||
搜索关键词: | 一种 基于 多数 投票 深度 学习 城市 功能 区分 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院空天信息创新研究院,未经中国科学院空天信息创新研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010329285.9/,转载请声明来源钻瓜专利网。