[发明专利]一种基于改进卷积神经网络的植物叶片病虫害识别方法在审

专利信息
申请号: 202010333440.4 申请日: 2020-04-24
公开(公告)号: CN111563431A 公开(公告)日: 2020-08-21
发明(设计)人: 李潇;熊洋 申请(专利权)人: 空间信息产业发展股份有限公司
主分类号: G06K9/00 分类号: G06K9/00;G06N3/04;G06N3/08
代理公司: 成都正华专利代理事务所(普通合伙) 51229 代理人: 陈选中
地址: 610000 四川省成都市武*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于改进卷积神经网络的植物叶片病虫害识别方法,提供了改进的AlexNet网络模型,采用批归一化与全局池化相结合的卷积神经网络模型识别多种叶片病虫害,改进模型在训练时间和内存需求上都进行了较大的优化,并且精简了模型参数,同时也提高了模型泛化能力;本发明通过训练好的改进的AlexNet特征网络作为植物病虫害识别模型提高了植物叶片病虫害识别的准确率,具有更好地鲁棒性,能够识别多种植物叶片的不同病虫害,并且减少了模型训练所需要的资源和时间。
搜索关键词: 一种 基于 改进 卷积 神经网络 植物 叶片 病虫害 识别 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于空间信息产业发展股份有限公司,未经空间信息产业发展股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010333440.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top