[发明专利]一种基于特征金字塔卷积神经网络的半导体缺陷识别方法有效
申请号: | 202010362947.2 | 申请日: | 2020-04-30 |
公开(公告)号: | CN111652846B | 公开(公告)日: | 2022-08-16 |
发明(设计)人: | 不公告发明人 | 申请(专利权)人: | 成都数之联科技股份有限公司 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06V10/774;G06V10/764;G06V10/82;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 成都行之专利代理事务所(普通合伙) 51220 | 代理人: | 高俊 |
地址: | 610000 四川省*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于特征金字塔卷积神经网络的半导体缺陷识别方法,属于图像分类技术领域,其主要针对对于半导体检测行业当中,缺陷在图片中的占比较小,致使现有算法处理图片时,缺陷容易被大尺寸正常特征或背景掩盖的问题,调整各尺寸的权重,加大小尺寸特征的权重占比,以更适应主要为微小缺陷的半导体检测系统。 | ||
搜索关键词: | 一种 基于 特征 金字塔 卷积 神经网络 半导体 缺陷 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于成都数之联科技股份有限公司,未经成都数之联科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010362947.2/,转载请声明来源钻瓜专利网。