[发明专利]一种基于深度学习的网络威胁情报自动抽取方法有效

专利信息
申请号: 202010364312.6 申请日: 2020-04-30
公开(公告)号: CN111552855B 公开(公告)日: 2023-08-25
发明(设计)人: 李小勇;武涵;高雅丽;郭宁 申请(专利权)人: 北京邮电大学
主分类号: G06F16/951 分类号: G06F16/951;G06F16/9535;G06N3/0442;G06N3/045;G06N3/047;G06N3/048;G06N3/084
代理公司: 北京柏杉松知识产权代理事务所(普通合伙) 11413 代理人: 丁芸;马敬
地址: 100876 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明实施例提供了一种基于深度学习的网络威胁情报自动抽取方法,能够获取情报源数据,并判断情报源数据的数据结构类型;若数据结构类型为非结构化类型,则将情报源数据输入预先训练的情报实体识别模型,得到情报源数据中的各情报实体,情报实体识别模型为利用情报样本数据,基于预先设置的字与字的前后位置约束条件,训练得到的神经网络模型;按照预先设置的组合形式,将各情报实体组合得到网络威胁情报。应用本发明可以利用预先训练的情报实体识别模型进行网络威胁情报的自动抽取,而情报实体识别模型在训练时引入的位置约束条件限制情报实体中字与字的前后位置关系,因此减少情报实体乱序的结果出现,从而提高网络威胁情报识别的准确率。
搜索关键词: 一种 基于 深度 学习 网络 威胁 情报 自动 抽取 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京邮电大学,未经北京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010364312.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top