[发明专利]一种基于图卷积神经网络的弱监督目标检测方法有效
申请号: | 202010364601.6 | 申请日: | 2020-04-30 |
公开(公告)号: | CN111612051B | 公开(公告)日: | 2023-06-20 |
发明(设计)人: | 颜成钢;韩顾稳;史治国;孙垚棋;张继勇;张勇东 | 申请(专利权)人: | 杭州电子科技大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/82;G06N3/042;G06N3/0464;G06N3/048;G06N3/08 |
代理公司: | 杭州君度专利代理事务所(特殊普通合伙) 33240 | 代理人: | 朱月芬 |
地址: | 310018 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于图卷积神经网络的弱监督目标检测方法。本发明通过引入只检测到物体一部分的伪标注框作为弱监督目标检测网络的监督条件,通过多实例网络只检测到物体的一部分而不是覆盖全部物体;利用图卷积神经网络把检测为物体框的邻近且相交的候选框学习物体框的特征表示;因为和物体框相交的候选框也是物体的一部分,通过学习检测为物体的框的特征表示来改变候选框的特征表示,邻近的框学习检测为物体的框的特征;候选框和检测为物体框的特征表示就会相似,弱监督网络测试的时候会把与检测为物体框的邻近候选框也分类为目标物体;从而检测出的目标框覆盖更大的面积和更全的物体,提高弱监督目标检测的精度。 | ||
搜索关键词: | 一种 基于 图卷 神经网络 监督 目标 检测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010364601.6/,转载请声明来源钻瓜专利网。