[发明专利]一种基于图像显著性和迁移学习的图像场景分类方法有效

专利信息
申请号: 202010390009.3 申请日: 2020-05-09
公开(公告)号: CN111626149B 公开(公告)日: 2022-08-26
发明(设计)人: 宋建新;傅宁 申请(专利权)人: 南京邮电大学
主分类号: G06V20/20 分类号: G06V20/20;G06V10/74;G06V10/764;G06V10/82;G06K9/62;G06N3/04;G06N3/08
代理公司: 南京苏高专利商标事务所(普通合伙) 32204 代理人: 柏尚春
地址: 210023 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于图像显著性和迁移学习的图像场景分类方法,包括以下步骤:1、提取不同场景的样本图像,将图像缩放后形成图像集;2、提取图像集中每幅图像的显著性区域;3、将步骤2得到的每幅图像的显著性区域的图像放大后构建显著性图像集,并将其按比例划分训练集和测试集;4、基于通用的VGG16模型建立场景分类网络模型,进行迁移学习操作;5、用步骤3得到的训练集和测试集训练并测试步骤4搭建的网络;6、用步骤4建立和步骤5训练得到的网络实施图像场景分类;本发明利用深度迁移学习,有效解决了实际应用中训练样本不足导致判别性能不足的问题,其次,本发明采用显著性区域提取来处理数据集,显著提高了场景分类的效率和准确度。
搜索关键词: 一种 基于 图像 显著 迁移 学习 场景 分类 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010390009.3/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top