[发明专利]深度卷积神经网络的压缩方法及系统在审
申请号: | 202010440475.8 | 申请日: | 2020-05-22 |
公开(公告)号: | CN111612143A | 公开(公告)日: | 2020-09-01 |
发明(设计)人: | 胡卫明;刘雨帆;阮晓峰;李兵;李扬曦 | 申请(专利权)人: | 中国科学院自动化研究所 |
主分类号: | G06N3/08 | 分类号: | G06N3/08;G06N3/04 |
代理公司: | 北京市恒有知识产权代理事务所(普通合伙) 11576 | 代理人: | 郭文浩;尹文会 |
地址: | 100190 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种深度卷积神经网络的压缩方法及系统,所述压缩方法包括:根据滤波器重要性选择方式和/或模型压缩率,确定待压缩深度卷积神经网络中不重要的滤波器;对不重要的滤波器施加渐进式稀疏约束,作为正则项加入到网络训练的损失函数中,得到优化损失函数;根据正则项,采用阈值迭代算法及反向传播算法联合求解,得到待压缩深度卷积神经网络的更新参数;基于所述优化损失函数及更新参数,获得具有滤波器稀疏形式的卷积神经网络模型;利用结构化剪枝算法,对所述具有滤波器稀疏形式的卷积神经网络模型进行剪枝,得到网络精度较高的压缩后的卷积神经网络模型。 | ||
搜索关键词: | 深度 卷积 神经网络 压缩 方法 系统 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院自动化研究所,未经中国科学院自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010440475.8/,转载请声明来源钻瓜专利网。
- 上一篇:分离装置和分离方法
- 下一篇:多类设备归一化网络维护方法及维护系统