[发明专利]一种基于卷积神经网络和数字全息的海洋浮游生物自动分类方法在审
申请号: | 202010452771.X | 申请日: | 2020-05-26 |
公开(公告)号: | CN111723848A | 公开(公告)日: | 2020-09-29 |
发明(设计)人: | 张怡龙;卢耀翔;王海霞;陈朋;梁荣华 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08;G06T7/90 |
代理公司: | 杭州斯可睿专利事务所有限公司 33241 | 代理人: | 王利强 |
地址: | 310014 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于卷积神经网络和数字全息的海洋浮游生物自动分类方法,包括以下步骤:1)使用数字全息系统拍摄海洋浮游生物的全息图像;2)构建卷积神经网络模型,设定卷积层数,卷积核尺寸,训练参数和损失函数,将1)中得到的图片输入至神经网络中,运行神经网络,获得最终分类结果。本发明针对目前数字全息系统对海洋浮游生物的广泛应用,为满足高效率、低成本和快速性的要求,利用数字全息技术结合深度学习技术,公开了一种基于数字全息图像的海洋浮游生物快速分类方法。 | ||
搜索关键词: | 一种 基于 卷积 神经网络 数字 全息 海洋 浮游生物 自动 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010452771.X/,转载请声明来源钻瓜专利网。