[发明专利]一种基于稠密卷积神经网络的LPI雷达信号分类方法有效
申请号: | 202010461186.6 | 申请日: | 2020-05-27 |
公开(公告)号: | CN111582236B | 公开(公告)日: | 2022-08-02 |
发明(设计)人: | 司伟建;万晨霞;曲志昱;张春杰;侯长波 | 申请(专利权)人: | 哈尔滨工程大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 150001 黑龙江省哈尔滨市南岗区*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于稠密卷积神经网络的LPI雷达信号分类方法,首先制作数据集,获取几种不同脉内调制方式的LPI雷达信号,对雷达信号进行时频分布处理,得到时频图像;采用图像处理技术,对时频图像进行预处理。然后构建一种基于稠密卷积神经网络的特征提取与分类方法。为了加快和优化所提模型的学习效率,采用迁移学习对网络模型进行预训练,利用Adam算法对网络参数进行优化训练。最后采用SoftMax分类器准确获得8个LPI雷达信号分类结果。本发明提出利用稠密卷积神经网络,能更充分提取雷达信号特征,加强特征重利用,从而提高雷达波形在低信噪比下的识别性能,可用于复杂电磁环境下的雷达信号识别。 | ||
搜索关键词: | 一种 基于 稠密 卷积 神经网络 lpi 雷达 信号 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工程大学,未经哈尔滨工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010461186.6/,转载请声明来源钻瓜专利网。