[发明专利]轻量化深度可分离卷积特征融合网的高光谱图像分类方法有效
申请号: | 202010486459.2 | 申请日: | 2020-06-01 |
公开(公告)号: | CN111695469B | 公开(公告)日: | 2023-08-11 |
发明(设计)人: | 王佳宁;黄润虎;郭思颖;李林昊;杨攀泉;焦李成;杨淑媛;刘芳 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/58;G06V20/10;G06V10/80;G06V10/77;G06V10/82;G06N3/0464;G06N3/048;G06N3/084 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 高博 |
地址: | 710071 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种轻量化深度可分离卷积特征融合网的高光谱图像分类方法,处理高光谱图像,并进行归一化处理获得样本集,对样本集进行分类,完成数据预处理;设置光谱信息提取模块、空间信息提取模块和多层特征融合模块,完成训练模型构建;使用构建的训练模型对预处理的卷积神经网络进行训练,得到最终训练结果;将卷积神经网络运行重复N次,通过N次测试结果进行投票表决得到最终的分类结果,进行高光谱图像分类;根据高光谱图像分类结果输出分类图像。本发明采用光谱信息与空间信息相融合的方法,降低参数数量,增加网络深度,提升网络运行效率,改善了分类准确度。 | ||
搜索关键词: | 量化 深度 可分离 卷积 特征 融合 光谱 图像 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010486459.2/,转载请声明来源钻瓜专利网。