[发明专利]一种基于深度学习多模型融合的复杂化工过程故障诊断方法在审
申请号: | 202010511370.7 | 申请日: | 2020-06-08 |
公开(公告)号: | CN111665819A | 公开(公告)日: | 2020-09-15 |
发明(设计)人: | 王楠;张日东 | 申请(专利权)人: | 杭州电子科技大学 |
主分类号: | G05B23/02 | 分类号: | G05B23/02 |
代理公司: | 浙江千克知识产权代理有限公司 33246 | 代理人: | 周希良 |
地址: | 310018 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习多模型融合的复杂化工过程故障诊断方法。本发明中两个神经网络分别从两方面自动提取故障特征,再将特征进行融合并输入多层感知器(MLP)进行进一步的特征压缩与提取,最终输出诊断结果。本发明通过卷积神经网络(CNN)与长短期记忆网络(LSTM)分别进行提取特征,使得网络最终所提取的特征同时具有空间以及时间特性,综合两方面特性进行最终诊断,由此不但克服了现有传统诊断技术计算量大的问题,而且还克服了因单一网络所提取特征过于片面,而导致的无法准确在复杂化工过程进行故障诊断的技术问题。 | ||
搜索关键词: | 一种 基于 深度 学习 模型 融合 复杂 化工 过程 故障诊断 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010511370.7/,转载请声明来源钻瓜专利网。