[发明专利]基于CNN-LSTM模型和迁移学习的信号调制样式识别方法有效
申请号: | 202010548590.7 | 申请日: | 2020-06-16 |
公开(公告)号: | CN111832417B | 公开(公告)日: | 2023-09-15 |
发明(设计)人: | 占锦敏;赵知劲;翁建新 | 申请(专利权)人: | 杭州电子科技大学 |
主分类号: | G06F18/213 | 分类号: | G06F18/213;G06F18/24;G06F18/214;G06F18/2431;G06F18/25;G06N3/0442;G06N3/0464;G06N3/08;G06N20/00 |
代理公司: | 杭州君度专利代理事务所(特殊普通合伙) 33240 | 代理人: | 朱月芬 |
地址: | 310018 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于CNN‑LSTM模型和迁移学习的信号调制样式识别方法。本发明首先对采集多种不同调制信号样本集,预处理得到源数据集;再构建CNN‑LSTM网络模型,将网络的权值进行随机初始化,输入源数据集对网络模型进行预训练;将预训练后CNN网络与LSTM网络的权值参数对应迁移至目标CNN‑LSTM网络中,输入训练数据集对目标CNN‑LSTM网络中的随机森林分类器进行训练,得到训练完成的CNN‑LSTM网络;最后利用训练完成的CNN‑LSTM网络对测试数据集进行调制样式识别,得到信号分类识别结果。本发明结合了CNN网络与LSTM网络的特征提取优点,提高了信号识别性能,并解决了深度学习在缺少目标信号样本的条件下识别性能差的问题。 | ||
搜索关键词: | 基于 cnn lstm 模型 迁移 学习 信号 调制 样式 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010548590.7/,转载请声明来源钻瓜专利网。