[发明专利]一种基于卷积神经网络的三维颗粒类别检测方法及系统有效
申请号: | 202010563714.9 | 申请日: | 2020-06-19 |
公开(公告)号: | CN112001218B | 公开(公告)日: | 2023-05-30 |
发明(设计)人: | 张法;郝语;万晓华;刘志勇;李锦涛 | 申请(专利权)人: | 中国科学院计算技术研究所 |
主分类号: | G06V20/64 | 分类号: | G06V20/64;G06V10/44;G06V10/764;G06V10/774;G06V10/82;G06N3/0464;G06N3/047;G06N3/048;G06N3/084 |
代理公司: | 北京律诚同业知识产权代理有限公司 11006 | 代理人: | 祁建国 |
地址: | 100080 北*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出一种基于卷积神经网络的三维颗粒类别检测方法和系统,包括:构建包括混合尺度的三维扩张卷积层、稠密连接和损失函数的三维混合尺度密集卷积神经网络,用已标注颗粒坐标的三维冷冻电子断层图像训练该卷积神经网络,得到颗粒挑选模型,用已标注颗粒类别的三维冷冻电子断层图像训练该卷积神经网络,得到颗粒分类模型;通过滑动窗口采集三维冷冻电子断层图像,得到待检测三维重构的子区域,通过该颗粒挑选模型对每个该子区域进行预测,合并子区域的预测结果得到该三维冷冻电子断层图像中各颗粒的坐标;根据各颗粒的坐标,提取颗粒的三维图像,将每个颗粒的三维图像输入至该颗粒分类模型,得到各颗粒的所属类别。 | ||
搜索关键词: | 一种 基于 卷积 神经网络 三维 颗粒 类别 检测 方法 系统 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院计算技术研究所,未经中国科学院计算技术研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010563714.9/,转载请声明来源钻瓜专利网。
- 上一篇:一种稻田养蟹的方法
- 下一篇:高纯磷酸的生产系统以及生产方法