[发明专利]一种基于QL学习策略面向MDU隐私数据保护的流量补偿激励方法有效

专利信息
申请号: 202010570068.9 申请日: 2020-06-21
公开(公告)号: CN111723402B 公开(公告)日: 2023-05-30
发明(设计)人: 张德干;陈露;杜金玉;张捷;张婷;姜凯雯 申请(专利权)人: 天津理工大学
主分类号: G06F21/62 分类号: G06F21/62;G06N7/01;G06N20/00;G06F18/24;H04W28/10
代理公司: 天津耀达律师事务所 12223 代理人: 张耀
地址: 300384 *** 国省代码: 天津;12
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种基于QL学习策略面向MDU隐私数据保护的流量补偿激励方法。设计MCS与MEC相结合的系统架构,通过EC将感知结果上传到MCS云,减少MCS云开销。构建一种基于MCMC的本地差分隐私属性相关性保护模型,生成属性相关性精确度更高的感知结果,并保护MDU隐私数据安全。设计基于QL机会协作传输的MDU隐私数据保护的流量补偿激励架构,减少MCS云的流量补偿开销,提高MDU参与积极性。与现有的高维属性数据隐私保护、机会中继感知激励等方法实验比较,QLPPIA方法平均提高感知结果准确性29.4%,降低MCS云开销89.92%,减少流量补偿开销19.03%。
搜索关键词: 一种 基于 ql 学习 策略 面向 mdu 隐私 数据 保护 流量 补偿 激励 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津理工大学,未经天津理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010570068.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top