[发明专利]一种基于CNN-IPSO-GRU混合模型的短期电力负荷预测方法有效

专利信息
申请号: 202010573272.6 申请日: 2020-06-22
公开(公告)号: CN111738512B 公开(公告)日: 2022-05-24
发明(设计)人: 刘可真;苟家萁;骆钊;徐玥;李鹤健;和婧;王骞;刘通;阮俊枭;吴世浙;陈雪鸥;陈镭丹;迟焕斌 申请(专利权)人: 昆明理工大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/06;G06N3/04;G06N3/08;G06N3/00
代理公司: 昆明润勤同创知识产权代理事务所(特殊普通合伙) 53205 代理人: 付石健
地址: 650000 云南省昆明市呈*** 国省代码: 云南;53
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于CNN‑IPSO‑GRU混合模型的短期电力负荷预测方法,首先收集电网历史负荷、气象因素和日期信息等数据,进行数据归一化处理后并划分训练集和测试集,利用卷积神经网络技术提取出表征负荷变化的多维特征向量,构造成时间序列作为模型的输入;然后构建门控循环单元网络预测模型,并利用训练集数据通过改进粒子群算法对门控循环单元网络预测模型进行优化,获得两个最优的预测模型参数,以获得的最优预测模型参数重新建立门控循环单元网络模型;最后以测试集数据实现电网短期的负荷预测。本发明提供的方法可以准确预测电网短期负荷变化趋势,进一步对降低发电机组的损耗、保证电网经济可靠运行发挥着重要作用。
搜索关键词: 一种 基于 cnn ipso gru 混合 模型 短期 电力 负荷 预测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于昆明理工大学,未经昆明理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010573272.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top