[发明专利]一种基于CNN-IPSO-GRU混合模型的短期电力负荷预测方法有效
申请号: | 202010573272.6 | 申请日: | 2020-06-22 |
公开(公告)号: | CN111738512B | 公开(公告)日: | 2022-05-24 |
发明(设计)人: | 刘可真;苟家萁;骆钊;徐玥;李鹤健;和婧;王骞;刘通;阮俊枭;吴世浙;陈雪鸥;陈镭丹;迟焕斌 | 申请(专利权)人: | 昆明理工大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/06;G06N3/04;G06N3/08;G06N3/00 |
代理公司: | 昆明润勤同创知识产权代理事务所(特殊普通合伙) 53205 | 代理人: | 付石健 |
地址: | 650000 云南省昆明市呈*** | 国省代码: | 云南;53 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于CNN‑IPSO‑GRU混合模型的短期电力负荷预测方法,首先收集电网历史负荷、气象因素和日期信息等数据,进行数据归一化处理后并划分训练集和测试集,利用卷积神经网络技术提取出表征负荷变化的多维特征向量,构造成时间序列作为模型的输入;然后构建门控循环单元网络预测模型,并利用训练集数据通过改进粒子群算法对门控循环单元网络预测模型进行优化,获得两个最优的预测模型参数,以获得的最优预测模型参数重新建立门控循环单元网络模型;最后以测试集数据实现电网短期的负荷预测。本发明提供的方法可以准确预测电网短期负荷变化趋势,进一步对降低发电机组的损耗、保证电网经济可靠运行发挥着重要作用。 | ||
搜索关键词: | 一种 基于 cnn ipso gru 混合 模型 短期 电力 负荷 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于昆明理工大学,未经昆明理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010573272.6/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理