[发明专利]基于深度主动学习的工业产品表面缺陷检测方法及系统在审
申请号: | 202010574964.2 | 申请日: | 2020-06-22 |
公开(公告)号: | CN111833313A | 公开(公告)日: | 2020-10-27 |
发明(设计)人: | 伍旭东;王勇 | 申请(专利权)人: | 广东工业大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 广州粤高专利商标代理有限公司 44102 | 代理人: | 张金福 |
地址: | 510060 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出了一种基于深度主动学习的工业产品表面缺陷检测方法,解决现有运用卷积神经网络检测缺陷时,浪费人力时间大量标注数据的问题,方法包括:利用图像采集器采集工业产品表面图像样本;通过迁移学习获取卷积神经网络模型作为工业产品表面缺陷检测的训练模型,保留卷积神经网络模型的各层参数作为训练模型的初始参数;初始化训练模型,得到神经网络参数W后,将已标注训练样本集L中的样本清空;通过主动学习选择未标注数据集U中的样本进行标注,对训练模型进行训练调节;对工业产品表面进行缺陷检测。本发明提出了一种基于深度主动学习的工业产品表面缺陷检测系统,提高工业产品表面缺陷检测效率。 | ||
搜索关键词: | 基于 深度 主动 学习 工业产品 表面 缺陷 检测 方法 系统 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东工业大学,未经广东工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010574964.2/,转载请声明来源钻瓜专利网。