[发明专利]一种基于深度学习神经网络的RCS时间序列特征提取方法有效

专利信息
申请号: 202010590943.X 申请日: 2020-06-24
公开(公告)号: CN111859784B 公开(公告)日: 2023-02-24
发明(设计)人: 杨嘉琛;张茁 申请(专利权)人: 天津大学
主分类号: G06F30/27 分类号: G06F30/27;G06F18/241;G06F18/214;G06N3/0442;G06N3/08
代理公司: 天津市北洋有限责任专利代理事务所 12201 代理人: 程毓英
地址: 300072*** 国省代码: 天津;12
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于深度学习神经网络的RCS时间序列特征提取方法,包括下列步骤:目标样本建模;获取目标样本RCS值;计算目标RCS时间序列;利用MATLAB程序制作训练集:以RCS时间序列为训练数据,并附上时间序列对应目标的包括种类、尺寸、角度在内的各项物理参数作为数据特征,以此形成神经网络训练数据集;搭建基于深度神经网络的特征提取系统。
搜索关键词: 一种 基于 深度 学习 神经网络 rcs 时间 序列 特征 提取 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010590943.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top