[发明专利]一种基于深度学习理论的不确定性结构频响动力学模型修正方法有效
申请号: | 202010593300.0 | 申请日: | 2020-06-26 |
公开(公告)号: | CN111783336B | 公开(公告)日: | 2022-06-14 |
发明(设计)人: | 邓忠民;张鑫杰 | 申请(专利权)人: | 北京航空航天大学 |
主分类号: | G06F30/23 | 分类号: | G06F30/23;G06F30/27;G06K9/62;G06N3/04 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 100191 北京市*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于深度学习理论的不确定性结构频响动力学模型修正方法。包括不确定性参数影响下的结构频率响应不确定性分析,通过深度卷积神经网络构建不确定性逆向传递关系,利用深度学习原理实现不确定性参数的概率分布估计。本发明结合深度学习原理在复杂输入特征分析方面的优势,利用深度卷积神经网络对含有不确定性分布特征的频响数据进行特征分析和特征提取。此外,本发明利用不确定性频响数据条件分布概率和待修正参数的先验概率,求解待修正参数的条件概率分布,最终得到了不确定性参数的分布,避免了人工进行频响不确定性量化和特征提取带来的误差,提高了考虑不确定性的频响动力学模型修正的准确度。 | ||
搜索关键词: | 一种 基于 深度 学习理论 不确定性 结构 响动 力学 模型 修正 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010593300.0/,转载请声明来源钻瓜专利网。