[发明专利]基于卷积神经网络多层特征融合的机器人闭环检测方法有效
申请号: | 202010597702.8 | 申请日: | 2020-06-28 |
公开(公告)号: | CN111753752B | 公开(公告)日: | 2022-07-01 |
发明(设计)人: | 胡章芳;冯淳一;罗元;刘家瑜;陈一鑫;李越豪 | 申请(专利权)人: | 重庆邮电大学 |
主分类号: | G06V20/10 | 分类号: | G06V20/10;G06V10/764;G06V10/82;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 重庆市恒信知识产权代理有限公司 50102 | 代理人: | 陈栋梁 |
地址: | 400065 重*** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: |
本发明请求保护一种基于卷积神经网络多层特征融合的机器人闭环检测方法,该方法包括步骤:S1,利用卷积神经网络作为特征提取器,将环境图像输入预训练的网络提取不同层特征;S2,建立浅层几何特征与深层语义特征融合模块,将不同层特征进行加权融合;S3,当前图像与历史关键图像的融合特征进行L |
||
搜索关键词: | 基于 卷积 神经网络 多层 特征 融合 机器人 闭环 检测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010597702.8/,转载请声明来源钻瓜专利网。