[发明专利]一种基于深度学习的弱监督目标定位方法在审

专利信息
申请号: 202010614514.1 申请日: 2020-06-30
公开(公告)号: CN111967464A 公开(公告)日: 2020-11-20
发明(设计)人: 赖睿;吴俣;徐昆然;李奕诗;官俊涛;杨银堂 申请(专利权)人: 西安电子科技大学
主分类号: G06K9/32 分类号: G06K9/32;G06K9/34;G06K9/46;G06K9/62;G06N3/04;G06N3/08
代理公司: 西安嘉思特知识产权代理事务所(普通合伙) 61230 代理人: 李园园
地址: 710000 陕*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度学习的弱监督目标定位方法,包括:将待测图像输入至弱监督定位网络,得到目标定位图以及所述目标的分类结果;基于目标定位图和分类结果确定目标定位结果;弱监督定位网络包括:初始特征提取模块,用于从待测图像中提取初始特征图;注意力加权模块,用于对初始特征图进行加权;掩模模块,用于屏蔽注意力加权特征图中与目标相关的显著性区域得到注意力掩模图;特征融合模块,用于对初始特征图和注意力掩模图进行特征融合;去冗余连通域模块,用于去除融合特征图中的冗余连通域,输出目标定位图;分类结果输出模块用于输出目标的分类结果。本发明可以在确保定位任务的准确性的前提下保持目标细节。
搜索关键词: 一种 基于 深度 学习 监督 目标 定位 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010614514.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top