[发明专利]一种基于深度贝叶斯学习的图像标记估计方法在审

专利信息
申请号: 202010734902.3 申请日: 2020-07-28
公开(公告)号: CN112001422A 公开(公告)日: 2020-11-27
发明(设计)人: 李绍园;侍野 申请(专利权)人: 南京航空航天大学
主分类号: G06K9/62 分类号: G06K9/62;G06K9/36;G06K9/46
代理公司: 南京苏高专利商标事务所(普通合伙) 32204 代理人: 李淑静
地址: 210016 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出了一种基于深度贝叶斯学习的图像标记估计方法,包括以下步骤:1)获取图像数据,将图像分发给网络上的标注者进行预标注,构造图像众包标记数据集;2)对图像做特征预提取处理,获得图像的fisher vector特征表示;3)搭建深度表示学习网络,构建标注生成过程的深度贝叶斯模型;4)将图像fisher vector特征及众包标记输入深度贝叶斯模型,基于图像和参数联合概率似然构造变分下界损失函数;5)基于自然梯度随机变分推断,端到端地对深度贝叶斯模型进行训练;6)返回模型输出的图像真实标记估计及各标注者的混淆矩阵。本发明克服了EM迭代式训练的低效率和非贝叶斯学习不可解释性的问题,提高了图像标记估计的效果。
搜索关键词: 一种 基于 深度 贝叶斯 学习 图像 标记 估计 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京航空航天大学,未经南京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010734902.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top