[发明专利]多特征融合深度神经网络的工业生产过程目标数据预测方法在审
申请号: | 202010744152.8 | 申请日: | 2020-07-29 |
公开(公告)号: | CN112001527A | 公开(公告)日: | 2020-11-27 |
发明(设计)人: | 曾九孙;欧阳航;丁克勤;蔡晋辉;姚燕 | 申请(专利权)人: | 中国计量大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/04;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 林超 |
地址: | 310018 浙江省*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种多特征融合深度神经网络的工业生产过程目标数据预测方法。利用传感器通过等间隔采样采集工业设备中与关键变量相关的其他变量时间序列数据,对流程工业中关键变量的时间序列数据进行预测分析;输入到预先设计构建的深度卷积神经网络中进行训练;将关键变量的历史数据按时间步分割好后输入至深度门控循环神经网络学习;利用多特征融合方法,将两个网络得到的输出特征融合再输入到全连接层,通过反向传播优化网络参数,提高预测精度。本发明为工业生产中的过程监测提供了可靠有效的目标变量参数预测,缓解了工业生产中对如铁水含硅量等关键性变量测量的滞后性。 | ||
搜索关键词: | 特征 融合 深度 神经网络 工业 生产过程 目标 数据 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国计量大学,未经中国计量大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010744152.8/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理