[发明专利]基于多特征融合CNN的肌电手势识别方法在审

专利信息
申请号: 202010744973.1 申请日: 2020-07-29
公开(公告)号: CN111860410A 公开(公告)日: 2020-10-30
发明(设计)人: 郭剑;孙浩然;何玉鹏;鲁捷敏;韩嘉琛;韩崇;王娟 申请(专利权)人: 南京邮电大学
主分类号: G06K9/00 分类号: G06K9/00;G06F3/01;G06K9/62;G06N3/04;G06N3/08
代理公司: 南京正联知识产权代理有限公司 32243 代理人: 张玉红
地址: 210023 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 基于多特征融合CNN的肌电手势识别方法,提出了基于并行的特征融合卷积神经网络架构。该方法为简化训练过程,减少训练集对于设计特定特征集的依赖,以深度学习方法中的卷积神经网络架构为基础进行设计;其次在架构上使用并行神经网络对时域信号和频域信号同时进行训练,有助于提升训练效率,减少训练时间;在训练模型中,提取训练初期的浅层数据特征与网络末端的深层特征相融合,输入分类层进行分类。
搜索关键词: 基于 特征 融合 cnn 手势 识别 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010744973.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top