[发明专利]基于稀疏编码的深度学习网络结构搜索的图像识别方法在审
申请号: | 202010876709.3 | 申请日: | 2020-08-27 |
公开(公告)号: | CN111967528A | 公开(公告)日: | 2020-11-20 |
发明(设计)人: | 林宙辰;杨一博;李宏扬;游山;王飞;钱晨 | 申请(专利权)人: | 北京大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/08;G06N3/04 |
代理公司: | 北京万象新悦知识产权代理有限公司 11360 | 代理人: | 黄凤茹 |
地址: | 100871*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公布了一种基于稀疏编码的深度学习网络结构搜索的图像识别方法,将基于梯度的可微分网络模型结构进行优化,构造用于在原始高维空间经压缩后映射的低维空间上进行结构搜索的网络模型,再通过稀疏编码技术使得压缩后的低维空间的解对应于原始空间的稀疏解,搜索时优化的网络模型结构即为重训练时的结构,应用于搜索‑重训练两阶段图像识别以及搜索‑重训练合并一阶段图像识别。本发明在搜索阶段的网络即具有稀疏性,在搜索训练阶段最终收敛的结构即为最终搜到的结构,网络结构搜索更加高效合理,使得图像识别的性能优异。 | ||
搜索关键词: | 基于 稀疏 编码 深度 学习 网络 结构 搜索 图像 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京大学,未经北京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010876709.3/,转载请声明来源钻瓜专利网。
- 上一篇:一种耐腐蚀的汽车刹车片及其加工工艺
- 下一篇:一种可控硅的制作方法