[发明专利]一种基于类内特征迁移学习与多源信息融合的驱动电机故障诊断模型构建方法有效

专利信息
申请号: 202010895235.7 申请日: 2020-08-31
公开(公告)号: CN112036301B 公开(公告)日: 2021-06-22
发明(设计)人: 俞啸;刘诗源;任晓红;董飞;陈伟 申请(专利权)人: 中国矿业大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62;G01H17/00
代理公司: 北京东方盛凡知识产权代理事务所(普通合伙) 11562 代理人: 张换君
地址: 221116 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于类内特征迁移学习与多源信息融合的驱动电机故障诊断模型构建方法,首先提出了一种改进的分层迁移学习方法MSTL,不仅考虑了类内样本间近邻关系,保持类内数据的局部流形结构,还能够提高经迁移学习后域数据对不同类别的可分性,以提升故障诊断模型的对不同分布域样本的适应能力,同时可以降低特征集维度,提升故障诊断模型在变工况下的故障诊断性能。此外,针对单个传感器采集信号会存在一定的不确定因素的问题,采用D‑S证据理论进行驱动电机多源信息决策层融合,对振动和电流信号在模型上的诊断结果进行二级D‑S证据融合。本发明所提出的特征迁移学习方法MSTL和多源信息融合诊断模型能够提高故障诊断准确率,具有一定的实用价值。
搜索关键词: 一种 基于 特征 迁移 学习 信息 融合 驱动 电机 故障诊断 模型 构建 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国矿业大学,未经中国矿业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010895235.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top