[发明专利]深度学习模型的可解释性参数获取方法及装置有效
申请号: | 202010912290.2 | 申请日: | 2020-09-02 |
公开(公告)号: | CN112052957B | 公开(公告)日: | 2023-08-04 |
发明(设计)人: | 许正卓;杨海钦 | 申请(专利权)人: | 平安科技(深圳)有限公司 |
主分类号: | G06N3/0464 | 分类号: | G06N3/0464;G06N3/0442;G06N3/0499;G06N3/084;G06F18/24;G06V10/82;G06V10/764 |
代理公司: | 深圳市精英专利事务所 44242 | 代理人: | 李翔宇 |
地址: | 518000 广东省深圳市福田区福*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了深度学习模型的可解释性参数获取方法、装置、计算机设备及存储介质,涉及人工智能技术,包括将测试图片对应的像素矩阵输入至连接主义机器学习模型进行运算,得到输出结果及各个隐层单元的单元输出结果;获取最后一层隐层中单元输出结果为最大值的目标隐层单元,以根据其与相关性算法,计算各隐层单元的隐层单元相关性值;以各层隐层中隐层单元相关性值为最大值的隐层单元以组成当前目标隐层单元清单;根据输出结果与输出结果调节值求和得到当前输出结果;将当前输出结果作为扰动输出值获取所述隐藏层中各个隐层单元对应的单元扰动值;之后进行升序排序得到隐层单元排序结果。实现了对深度学习模型的可解释性参数的准确和可视化获取。 | ||
搜索关键词: | 深度 学习 模型 解释性 参数 获取 方法 装置 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于平安科技(深圳)有限公司,未经平安科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010912290.2/,转载请声明来源钻瓜专利网。
- 上一篇:一种PLC控制的脱硝设备
- 下一篇:一种电力信息用通信架空维修设备