[发明专利]一种基于深度学习的材料显微图像与性能双向预测方法有效
申请号: | 202010923773.2 | 申请日: | 2020-09-04 |
公开(公告)号: | CN112101432B | 公开(公告)日: | 2022-06-07 |
发明(设计)人: | 杨宁;古胜利;郭雷 | 申请(专利权)人: | 西北工业大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06K9/62;G06V10/40;G06N3/04;G06N3/08 |
代理公司: | 西安凯多思知识产权代理事务所(普通合伙) 61290 | 代理人: | 王鲜凯 |
地址: | 710072 *** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于深度学习的材料显微图像与性能双向预测方法,提出CNN与DNN相结合的算法用以处理多种输入的并行预测。以CNN提取材料显微图像特征,在第一层全连接层加入以材料成分,工艺为代表的一维特征向量。综合图像特征,其他特征为DNN输入,实现材料综合特征与性能的回归预测或分类。在GAN大量生成图像的基础上,使用前面预测模型对生成的图像性能进行预测。为了增加实验结果的可信度,可以训练三个不同的网络进行预测,最终去三者的交集作为目标图像输出。通过结合卷积神经网络提取特征与成分、工艺等特征,模型与性能的拟合度大幅提升,避免模型欠拟合,性能分类的预测方法符合生产实际需求。 | ||
搜索关键词: | 一种 基于 深度 学习 材料 显微 图像 性能 双向 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学,未经西北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010923773.2/,转载请声明来源钻瓜专利网。