[发明专利]一种基于深度学习的材料显微图像与性能双向预测方法有效

专利信息
申请号: 202010923773.2 申请日: 2020-09-04
公开(公告)号: CN112101432B 公开(公告)日: 2022-06-07
发明(设计)人: 杨宁;古胜利;郭雷 申请(专利权)人: 西北工业大学
主分类号: G06V10/764 分类号: G06V10/764;G06K9/62;G06V10/40;G06N3/04;G06N3/08
代理公司: 西安凯多思知识产权代理事务所(普通合伙) 61290 代理人: 王鲜凯
地址: 710072 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于深度学习的材料显微图像与性能双向预测方法,提出CNN与DNN相结合的算法用以处理多种输入的并行预测。以CNN提取材料显微图像特征,在第一层全连接层加入以材料成分,工艺为代表的一维特征向量。综合图像特征,其他特征为DNN输入,实现材料综合特征与性能的回归预测或分类。在GAN大量生成图像的基础上,使用前面预测模型对生成的图像性能进行预测。为了增加实验结果的可信度,可以训练三个不同的网络进行预测,最终去三者的交集作为目标图像输出。通过结合卷积神经网络提取特征与成分、工艺等特征,模型与性能的拟合度大幅提升,避免模型欠拟合,性能分类的预测方法符合生产实际需求。
搜索关键词: 一种 基于 深度 学习 材料 显微 图像 性能 双向 预测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学,未经西北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010923773.2/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top