[发明专利]基于集成学习的疲劳驾驶脑电信号回归分析方法有效
申请号: | 202010925130.1 | 申请日: | 2020-09-06 |
公开(公告)号: | CN112016504B | 公开(公告)日: | 2022-06-03 |
发明(设计)人: | 董娜;张文锜;李英杰;高忠科 | 申请(专利权)人: | 天津大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;A61B5/369;A61B5/374;G06K9/62 |
代理公司: | 天津市北洋有限责任专利代理事务所 12201 | 代理人: | 李丽萍 |
地址: | 300072*** | 国省代码: | 天津;12 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于集成学习的疲劳驾驶脑电信号回归分析方法,采用功率谱密度特征提取器对受试者的30个通道的脑电图信号进行特征提取;用主成分分析法将特征数据进行降维,将降维后的特征数据作为集成学习模型的输入,将集成学习模型的输出进行拟合,最终得到该受试者的疲劳回归曲线;集成学习模型中,对脑电图信号的疲劳指数进行最小二乘拟合,并将拟合后的数据作为集成学习的数据标签;将支持向量回归算法作为基学习器,并采用贝叶斯模型组合方法对支持向量回归算法的输出进行组合。本发明中引入支持向量回归算法作为基学习器,通过增加基学习器的多样性和差异性,以及引入贝叶斯模型组合方法,提高回归分析方法在驾驶员疲劳回归分析中的性能。 | ||
搜索关键词: | 基于 集成 学习 疲劳 驾驶 电信号 回归 分析 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010925130.1/,转载请声明来源钻瓜专利网。