[发明专利]敏感度分析和强化学习的神经网络剪枝方法、系统及装置在审
申请号: | 202011056171.8 | 申请日: | 2020-09-30 |
公开(公告)号: | CN112183746A | 公开(公告)日: | 2021-01-05 |
发明(设计)人: | 陈海波;关翔 | 申请(专利权)人: | 深兰人工智能(深圳)有限公司 |
主分类号: | G06N3/08 | 分类号: | G06N3/08;G06N3/04;G06N3/063 |
代理公司: | 常州佰业腾飞专利代理事务所(普通合伙) 32231 | 代理人: | 陈红桥 |
地址: | 518131 广东省深圳市龙华*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种敏感度分析和强化学习的神经网络剪枝方法、系统及装置,包括:设定稀疏度阈值步骤,选择低敏感度的权重进行剪枝;获取裁剪办法和精度步骤,根据上述的敏感度权重确定需要进行随机剪枝的权重;对被选定的每一个权重进行随机裁剪,将多次随机裁剪的剪枝办法和精度放入缓冲区;训练强化学习步骤,利用缓冲区中的数据训练强化学习代理,训练后生成的裁剪办法和精度放入缓冲区;重复进行,直到网络精度达到预设值。本发明选择低敏感度的权重进行剪枝,设定各权重的稀疏度阈值保证被裁剪的权重采用当前稀疏度进程裁剪后,网络下降的精度保持在预设范围以内。在保证网络精度的情况下,最大化的提升了神经网络的压缩率。 | ||
搜索关键词: | 敏感度 分析 强化 学习 神经网络 剪枝 方法 系统 装置 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深兰人工智能(深圳)有限公司,未经深兰人工智能(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011056171.8/,转载请声明来源钻瓜专利网。