[发明专利]SVM分类器的训练方法和石化储罐锈蚀缺陷分割方法在审

专利信息
申请号: 202011081229.4 申请日: 2020-10-09
公开(公告)号: CN112200246A 公开(公告)日: 2021-01-08
发明(设计)人: 孙凌宇;刘成艳;刘月 申请(专利权)人: 河北工业大学
主分类号: G06K9/62 分类号: G06K9/62;G06T7/00;G06T7/40;G06T7/90
代理公司: 天津翰林知识产权代理事务所(普通合伙) 12210 代理人: 张国荣;赵凤英
地址: 300130 天津市红桥区*** 国省代码: 天津;12
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种SVM分类器的训练方法和石化储罐锈蚀缺陷分割方法。所述SVM分类器的训练方法包括以下步骤:A)获得不同锈蚀程度的多个储罐锈蚀缺陷图像,根据多个储罐锈蚀缺陷图像的像素值定义锈蚀缺陷像素范围;B)选择多个储罐锈蚀缺陷图像作为训练图像,并生成多个超像素;C)提取每个超像素的颜色特征与纹理特征,将超像素和邻域超像素的颜色特征和纹理特征进行级联,以便构建超像素的特征向量,多个超像素的特征向量构成训练数据集;D)根据锈蚀缺陷像素范围对多个超像素进行标注并得到标注结果,将超像素标注为正样本或负样本;和E)利用训练数据集和标注结果训练SVM分类器。通过利用该SVM分类器的训练方法,可以提高SVM分类器的分类准确率。
搜索关键词: svm 分类 训练 方法 石化 锈蚀 缺陷 分割
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河北工业大学,未经河北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202011081229.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top