[发明专利]一种基于丢弃损失函数的人物属性识别方法有效
申请号: | 202011116242.9 | 申请日: | 2020-10-19 |
公开(公告)号: | CN112200260B | 公开(公告)日: | 2022-06-14 |
发明(设计)人: | 严严;许友泽;王菡子 | 申请(专利权)人: | 厦门大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/82;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 厦门南强之路专利事务所(普通合伙) 35200 | 代理人: | 马应森 |
地址: | 361005 福建*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于丢弃损失函数的人物属性识别方法,涉及基于内容的图像识别。首先设计基于ResNet‑50的深度卷积神经网络,然后设计丢弃损失函数中包含的离群样本丢弃策略,计算梯度值,选择性丢弃梯度值大于一定阈值的样本权重,再设计丢弃损失函数中包含的样本加权丢弃策略,选择性丢弃其梯度值最小的一部分样本,通过对样本加权的方式来平衡其正负类别的样本的分布,最后将训练样本集中的图像放进基于ResNet‑50的深度卷积神经网络计算得到总体损失,并利用反向传播算法进行端到端的训练,利用训练好的模型进行多属性识别,神经网络输出的特征即为识别结果。性能卓越,可有效识别图片中的多个属性,在平衡精度标准上有明显优势。 | ||
搜索关键词: | 一种 基于 丢弃 损失 函数 人物属性 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于厦门大学,未经厦门大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011116242.9/,转载请声明来源钻瓜专利网。