[发明专利]用于时间序列预测的高斯嵌入式神经网络模型及建模方法在审

专利信息
申请号: 202011139949.1 申请日: 2020-10-22
公开(公告)号: CN112183733A 公开(公告)日: 2021-01-05
发明(设计)人: 谢宗霞;胡慧;王旗龙 申请(专利权)人: 天津大学
主分类号: G06N3/04 分类号: G06N3/04;G06N3/08;G06F17/16
代理公司: 天津市北洋有限责任专利代理事务所 12201 代理人: 李丽萍
地址: 300072*** 国省代码: 天津;12
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种用于时间序列预测的高斯嵌入式神经网络模型,该模型包括:一个长短时记忆神经网络层,一个高斯嵌入式模块以及一个反馈通路模块。长短时记忆神经网络层用于在系统的每一次迭代中完成单一样本的时序特征建模,高斯嵌入式模块用于样本不确定性信息,反馈通路模块用于实现网络的迭代优化,提高模型的训练效果。本发明中还公开了上述高斯嵌入式神经网络模型的建模方法。本发明中通过端到端方式将可训练的概率分布插入LSTM作为特征表示,在此基础上实现了自适应的统计特征学习,与现有技术相比有更好的预测效果,能获得全局性更优、泛化性能更好的建模结果。
搜索关键词: 用于 时间 序列 预测 嵌入式 神经网络 模型 建模 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202011139949.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top