[发明专利]基于复合声学特征和低秩分解TDNN的说话人识别系统及方法在审

专利信息
申请号: 202011183292.9 申请日: 2020-10-29
公开(公告)号: CN112331216A 公开(公告)日: 2021-02-05
发明(设计)人: 苗冉;王以;申树藩;卫志华 申请(专利权)人: 同济大学
主分类号: G10L17/00 分类号: G10L17/00;G10L17/02;G10L17/04;G10L17/06;G10L17/18;G10L25/24
代理公司: 上海科律专利代理事务所(特殊普通合伙) 31290 代理人: 叶凤
地址: 200092 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要: 基于复合声学特征和低秩分解TDNN的说话人识别系统及方法。对输入的语音信号在预处理后采用MFCC和归一化互相关函数进行声学特征提取,将两种特征复合;在说话人模块中,将复合声学特征输入低秩矩阵分解TDNN进行帧级别特征提取,再经过统计池化层后,通过两个全连接层和一个softmax层完成段级别特征提取,并得到输入语音对应的特征向量。上述方法在采用低秩矩阵分解对TDNN进行优化,能够显著减小参数规模,加快训练速度;同时在网络中采用跳层连接,以减少梯度消失的出现;相较于常规声学特征提取在MFCC特征的基础上增加了归一化互相关函数进行音高特征提取,弥补了单纯采用MFCC对高频信息的损失,增加了特征的多样性,提高说话人识别的准确性。
搜索关键词: 基于 复合 声学 特征 分解 tdnn 说话 识别 系统 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于同济大学,未经同济大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202011183292.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top