[发明专利]一种基于深度卷积神经网络模型-重生网络的视觉识别方法在审

专利信息
申请号: 202011185864.7 申请日: 2020-10-30
公开(公告)号: CN112257800A 公开(公告)日: 2021-01-22
发明(设计)人: 蔡志成;庄建军;彭成磊 申请(专利权)人: 南京大学
主分类号: G06K9/62 分类号: G06K9/62;G06N3/04;G06N3/08
代理公司: 南京瑞弘专利商标事务所(普通合伙) 32249 代理人: 陈建和
地址: 210093 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 基于深度卷积神经网络模型‑重生网络的视觉识别方法,采用“重生机制”的“重生模块”搭建一种新型深度卷积神经网络模型,引入的重生机制对被ReLU函数截断死亡的神经元进行重生再造,“重生机制”的实现流程:在重生网络中,引入并实现重生机制的模块称为重生模块;首先,重生模块的输入x为上层卷积层得到的特征映射,先将x输入传统的ReLU函数,得到激活后的特征映射x1,这样就筛选出取值为正的神经元,并截断负值的神经元;同时,将输入x取反,并行地将‑x输入ReLU函数,得到激活后的特征映射x2*,这样就筛选出取值为负的神经元,并截断正值的神经元;对取值为负的神经元进行筛选后,对它们进行逆卷积操作,然后与正值进行通道级联,就是负神经元的重生过程。
搜索关键词: 一种 基于 深度 卷积 神经网络 模型 重生 网络 视觉 识别 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京大学,未经南京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202011185864.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top