[发明专利]基于网络学习的指静脉图像质量评价方法有效
申请号: | 202011186315.1 | 申请日: | 2020-10-30 |
公开(公告)号: | CN112288010B | 公开(公告)日: | 2022-05-13 |
发明(设计)人: | 马慧;田文博;王科俊;方春鑫 | 申请(专利权)人: | 黑龙江大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/774;G06V10/82;G06K9/62;G06T7/00;G06N3/04;G06N3/08 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 150081 黑龙江省哈尔滨*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明针对手指静脉识别系统性能受采集图像质量影响较大的问题,综合考虑手指静脉图像特点,提出了一种基于网络学习的指静脉图像质量评价方法。首先对采集到的手指静脉图像设计出亮度均匀性、清晰度、面积、位置偏移、信息熵、对比度、等效视数七种评价准则进行图像质量评价,并得到七个相应的质量评价分数;再将七个质量评价分数进行归一化处理,以避免数量级相差过大;最后将归一化后的图像质量评价分数作为网络输入,设计MEA‑BP‑Adaboost强分类器获得静脉图像总质量评估等级。本发明为手指静脉图像质量对识别精度影响较大的问题提出新的解决思路,对待识别图像依据图像质量评价指标进行质量评价,有利于提高不同环境下采集到的手指静脉图像的一致性,从而提高静脉识别系统后续的匹配识别准确性。 | ||
搜索关键词: | 基于 网络 学习 静脉 图像 质量 评价 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于黑龙江大学,未经黑龙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011186315.1/,转载请声明来源钻瓜专利网。