[发明专利]基于深度学习的架空输电线路覆冰厚度的长时间预测方法在审

专利信息
申请号: 202011202942.X 申请日: 2020-11-02
公开(公告)号: CN112183897A 公开(公告)日: 2021-01-05
发明(设计)人: 吴明朗 申请(专利权)人: 成都卡普数据服务有限责任公司
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/06;G06K9/62;G06N3/04;G06N3/08;G06N20/20
代理公司: 成都点睛专利代理事务所(普通合伙) 51232 代理人: 李玉兴
地址: 610000 四川省成都市人*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明属于覆冰预测技术领域,具体涉及一种基于深度学习的架空输电线路覆冰厚度的长时间预测方法。本发明为了解决架空输电线路的覆冰厚度的趋势预测,提出一种基于深度学习的架空输电线路覆冰厚度的长时间预测方法,主要是基于历史气象数据,气象预报数据,当前覆冰状态及杆塔的相关属性(如地形,海拔,呼高)数据,通过深度网络对覆冰厚度进行长时间的预测。主要包括数据集构建,数据处理,深度网络模型构建,训练和预测等。其中重点对深度网络的构建进行详细说明,包括网络层级的定义,关键层的作用。本发明能对气象的时间趋势特征提取,能对各个数据与覆冰厚度之间的关系进行表示,能提取更深层次和更复杂的特征,精准的对覆冰厚度进行估计。
搜索关键词: 基于 深度 学习 架空 输电 线路 厚度 长时间 预测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于成都卡普数据服务有限责任公司,未经成都卡普数据服务有限责任公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202011202942.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top