[发明专利]基于自编码器与3D深度残差网络的高光谱图像分类方法有效

专利信息
申请号: 202011217994.4 申请日: 2020-11-04
公开(公告)号: CN112232280B 公开(公告)日: 2021-12-03
发明(设计)人: 赵晋陵;胡磊;黄林生;黄文江;梁栋;徐超;张东彦;翁士状;郑玲 申请(专利权)人: 安徽大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62;G06N3/04;G06N3/08
代理公司: 合肥国和专利代理事务所(普通合伙) 34131 代理人: 张祥骞
地址: 230601 安徽省*** 国省代码: 安徽;34
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及基于自编码器与3D深度残差网络的高光谱图像分类方法,与现有技术相比解决了难以进行遥感高光谱图像分类的缺陷。本发明包括以下步骤:训练样本的获取;待训练高光谱遥感影像数据的预处理;堆栈自编码器神经网络模型的搭建和训练;3D深度残差网络的搭建与训练;待分类高光谱遥感影像的获取;待分类高光谱遥感影像的预处理和降维;高光谱遥感影像分类结果的获得。本发明通过搭建堆栈自编码器神经网络模型,对原始高光谱遥感影像进行降维,剔除了冗余信息;通过设计的3D卷积神经网络引入残差网络模块适当增加网络的深度,建立了3D深度残差网络,更加有效的提取了高光谱遥感影像的空谱联合信息,避免了梯度消失、网络退化的问题。
搜索关键词: 基于 编码器 深度 网络 光谱 图像 分类 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽大学,未经安徽大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202011217994.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top