[发明专利]一种基于多任务学习的标题生成方法在审

专利信息
申请号: 202011258676.2 申请日: 2020-11-11
公开(公告)号: CN112417149A 公开(公告)日: 2021-02-26
发明(设计)人: 刘博;胡志超 申请(专利权)人: 北京工业大学
主分类号: G06F16/35 分类号: G06F16/35;G06F40/216;G06F40/242;G06F40/284;G06N3/04;G06N3/08
代理公司: 北京思海天达知识产权代理有限公司 11203 代理人: 刘萍
地址: 100124 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出一种基于多任务学习的标题生成方法,首先获取需要进行标题生成的源文本数据,并且进行清洗等预处理,将文章送入Self‑Encoder端的BiLSTM模型进行特征提取,之后再通过TextRank算法以及多任务学习模块提取文章中的关键词,再将关键词送入Keywords‑Encoder端进行特征提取,然后将融合关键词信息和源文本信息的特征送入由BiLSTM组成的Decoder端。该网络更好的利用了原文中的关键词信息来进行标题生成,极大的丰富了特征提取的信息,提高了生成标题的质量。
搜索关键词: 一种 基于 任务 学习 标题 生成 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202011258676.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top