[发明专利]非欧与欧氏域空谱特征学习的异构深度网络方法有效
申请号: | 202011273501.9 | 申请日: | 2020-11-13 |
公开(公告)号: | CN112381144B | 公开(公告)日: | 2022-09-13 |
发明(设计)人: | 肖亮;刘启超;杨劲翔 | 申请(专利权)人: | 南京理工大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/82;G06N3/04;G06N3/08 |
代理公司: | 南京理工大学专利中心 32203 | 代理人: | 陈鹏 |
地址: | 210094 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种非欧与欧氏域空谱特征学习的异构深度网络方法,该方法包括:对高光谱图像执行超像素分割并构建像素到超像素的关联矩阵;根据超像素的邻接关系构建邻接矩阵;构建光谱变换子网络对光谱数据进行去冗余;构建超像素级图卷积子网络提取非欧域空谱特征;构建像素级空谱卷积子网络提取欧氏域空谱特征;融合非欧与欧氏域空谱特征并分类;使用交叉熵损失函数训练网络。本发明方法具有同时在欧氏与非欧域中提取高光谱图像空谱特征的能力,应用于高光谱图像监督分类具有优异性能。 | ||
搜索关键词: | 欧氏域空谱 特征 学习 深度 网络 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京理工大学,未经南京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011273501.9/,转载请声明来源钻瓜专利网。