[发明专利]基于时频分割及卷积神经网络的鲁棒环境声音识别方法在审
申请号: | 202011296063.8 | 申请日: | 2020-11-18 |
公开(公告)号: | CN112419258A | 公开(公告)日: | 2021-02-26 |
发明(设计)人: | 王靖宇;张彦华;苏雨;张科;王霰禹;马振宇;王林;王红梅;谢方园 | 申请(专利权)人: | 西北工业大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/11;G06T7/136;G06N3/04;G06N3/08;G10L25/30;G10L25/51 |
代理公司: | 西北工业大学专利中心 61204 | 代理人: | 华金 |
地址: | 710072 *** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于时频分割及卷积神经网络的鲁棒环境声音识别方法,该方法首先提出将二次型时频分析算法伪Wigner‑Vile分布应用于环境声音信号的时频表征,通过其可以得到更加直观和合理的时频表征图像;在时频图像基础上,应用伪彩色变换将灰度时频图像转换为伪彩色时频图像,进一步提升了时频表征的鲁棒性;其次,设计了一种基于图像显著性的时频分割算法,利用其对时频图像的环境声音信号分布区域进行提取,从而实现对时频图像噪声的去除;最后,将深度学习应用于环境声音信号识别,构建了一个基于深度卷积神经网络的环境声音信号识别模型,将经过时频分割去噪的伪彩色时频图像输入该模型进行训练和识别,有效提高了识别算法的鲁棒性。 | ||
搜索关键词: | 基于 分割 卷积 神经网络 环境 声音 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学,未经西北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011296063.8/,转载请声明来源钻瓜专利网。