[发明专利]面向广义非负矩阵分解算法的自适应梯度集成对抗性攻击方法在审
申请号: | 202011346295.X | 申请日: | 2020-11-26 |
公开(公告)号: | CN112465015A | 公开(公告)日: | 2021-03-09 |
发明(设计)人: | 罗文俊;李梦琪;陈自刚;蒋静;曾宇;王建菲 | 申请(专利权)人: | 重庆邮电大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N20/00;G06F17/16 |
代理公司: | 重庆市恒信知识产权代理有限公司 50102 | 代理人: | 李金蓉 |
地址: | 400065 重*** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种面向广义非负矩阵分解算法的自适应梯度集成对抗性攻击方法,属于对抗性机器学习技术领域。目前对抗性机器学习技术领域所要解决的关键技术问题是提高机器学习模型抵御对抗性攻击的能力。基于静态广义非负矩阵分解算法(General Non‑negative Matrix Factorization,GNMF)的机器学习功能,提出基于大批量的自适应梯度攻击算法;基于动态增量广义非负矩阵分解算法(Incremental GNMF,IGNMF)的机器学习功能,提出基于动量迭代的自适应梯度攻击算法;在黑盒攻击环境下,构建与基于广义非负矩阵分解算法的机器学习模型近似相同的替代模型训练对抗样本;最后对提出的黑盒攻击策略进一步优化,N次迭代集成多个预训练的GNMF替代模型以构造对抗样本,进而探究性能较优的黑盒攻击方法。 | ||
搜索关键词: | 面向 广义 矩阵 分解 算法 自适应 梯度 集成 对抗性 攻击 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011346295.X/,转载请声明来源钻瓜专利网。
- 上一篇:一种基于大数据的机器人安保系统
- 下一篇:一种高铁自助购餐辅助机器人系统