[发明专利]基于量子自学习自训练网络的手写体图片分类方法有效

专利信息
申请号: 202011370471.3 申请日: 2020-11-30
公开(公告)号: CN112446432B 公开(公告)日: 2023-06-30
发明(设计)人: 李阳阳;赵裴翔;刘睿娇;赵逸群;毛鹤亭;杨丹青;焦李成;李玲玲 申请(专利权)人: 西安电子科技大学
主分类号: G06V10/764 分类号: G06V10/764;G06V10/82;G06N3/086
代理公司: 陕西电子工业专利中心 61205 代理人: 田文英;张问芬
地址: 710071*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于量子自学习自训练网络的手写体图片分类方法,其步骤为:构建神经网络;生成训练集;计算量子染色体个体长度;建立量子染色体种群;对神经元的权重值与偏置值进行量子编码;利用量子进化策略获得最优神经网络;判断当前进化是否陷入局部最优,若是,进行全干扰交叉,否则,判断进化是否终止;进行全干扰交叉;判断当前的进化是否满足终止条件,若是,则输出分类结果,否则,继续进化迭代;输出分类结果。本发明有效的克服了现有技术中易于陷入局部最优,需要人为设置超参数过多的问题,具有分类精度高,保证分类结果稳定性和可靠性的优点。
搜索关键词: 基于 量子 自学习 训练 网络 手写体 图片 分类 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202011370471.3/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top