[发明专利]一种基于深度改进残差网络的SAR图像分类方法有效

专利信息
申请号: 202011379800.0 申请日: 2020-11-30
公开(公告)号: CN112633075B 公开(公告)日: 2022-03-29
发明(设计)人: 蒋忠进;曹磊;王强 申请(专利权)人: 东南大学
主分类号: G06V20/10 分类号: G06V20/10;G06V10/774;G06V10/82;G06K9/62;G06N3/04
代理公司: 南京瑞弘专利商标事务所(普通合伙) 32249 代理人: 彭雄
地址: 211189 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度改进残差网络的SAR图像分类方法,首先准备用于训练和测试的SAR图像数据训练集和测试集,两种数据都包括十类目标,每类目标包括多张SAR图像。建立深度残差网络模型,改进了残差模块,在传统残差模块的基础上进行三次跳跃性连接,增加了连接的分支数。深度残差网络模型包含依次顺序连接的输入层Input、残差与下采样组合、全连接层以及输出层Output,残差与下采样组合包括依次连接的多重连接残差模块和下采样模块DS,多重连接残差模块包括三个非线性处理子模块。用训练集对深度残差网络模型进行训练,然后用测试集对训练好的深度残差网络模型进行测试,并输出目标分类结果。本发明不仅继承了ResNet的易学习的优点,还加强了特征的传播利用率,有效提高了SAR图像目标分类的精度和速度。
搜索关键词: 一种 基于 深度 改进 网络 sar 图像 分类 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202011379800.0/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top