[发明专利]一种基于注意力机制的改进YOLOv3目标检测方法在审

专利信息
申请号: 202011396416.1 申请日: 2020-12-04
公开(公告)号: CN112508014A 公开(公告)日: 2021-03-16
发明(设计)人: 李永胜;孙长银;陆科林;徐乐玏 申请(专利权)人: 东南大学
主分类号: G06K9/32 分类号: G06K9/32;G06K9/62;G06N3/04
代理公司: 南京众联专利代理有限公司 32206 代理人: 杜静静
地址: 210096 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于注意力机制的改进YOLOv3目标检测方法,在主干网络Darknet‑53中引入注意力模块SKNet,根据输入自适应调整卷积核大小,聚焦到感兴趣区域;在特征提取网络的顶部引入空间金字塔池化模块SPP,增加网络的感受野;在特征融合网络中引入通道注意力模块SENet,为通道分配权重,充分提取通道的有效特征信息。实验表明,该发明相较于原始YOLOv3模型,可以有效检测小目标,加快训练的收敛速度,并在检测速度不受太大影响的前提下提高检测精度。
搜索关键词: 一种 基于 注意力 机制 改进 yolov3 目标 检测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202011396416.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top