[发明专利]基于不平衡数据深度学习的连退生产过程故障诊断方法有效
申请号: | 202011417539.9 | 申请日: | 2020-12-07 |
公开(公告)号: | CN112598026B | 公开(公告)日: | 2023-09-22 |
发明(设计)人: | 唐立新;王显鹏;胡腾辉 | 申请(专利权)人: | 东北大学 |
主分类号: | G06N20/20 | 分类号: | G06N20/20;G06F18/2415;G06F18/214;G06N3/048;G06N3/084;G05B23/02;G06Q50/04 |
代理公司: | 沈阳东大知识产权代理有限公司 21109 | 代理人: | 梁焱 |
地址: | 110819 辽宁*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了基于不平衡数据深度学习的连退生产过程故障诊断方法,属于钢铁企业连续退火生产过程的自动控制技术领域。通过深度自编码网络建立连退带钢生产过程数据的特征提取模型,将原始高维输入属性空间映射到低维子空间;采用SMOTE过采样方法对跑偏故障数据进行处理,以现有样本为基础合成新的少数类样本;将以特征提取模型为基础构建的深度神经网络作为子学习机,并利用过采样后得到的平衡数据集,使用AdaBoost.M2算法训练得到用于连退生产过程的带钢跑偏预测的集成学习故障诊断模型。可提高带钢跑偏预测的准确性,尤其提高少数类样本故障检测的准确性,能够帮助现场操作人员及时对连退生产过程进行调节,避免出现生产事故。 | ||
搜索关键词: | 基于 不平衡 数据 深度 学习 生产过程 故障诊断 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学,未经东北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011417539.9/,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置